下一代的晶体管候选,不是硅



半导体碳纳米管是具有纳米级直径的稳健分子,可用于场效应晶体管,从更大的薄膜实现到与硅电子设备协同工作的设备,并可能被用作高性能数字电子设备以及射频和传感应用的平台。本文简要综述了碳纳米管晶体管的材料、器件和技术的最新进展。


重点介绍了从单纳米管器件发展到排列纳米管甚至纳米管薄膜的最广泛的影响进展。还有一些障碍需要解决,包括材料合成和加工控制、器件结构设计和传输考虑,以及进一步的集成演示,提高了再现性和可靠性;然而目前已经实现了10000多个器件在单个功能芯片上的集成。


晶体管是一种电子开关器件,它能够基于其开(二进制1)和关(二进制0)操作进行数字计算。在集成电路的早期,人们很清楚,减小晶体管的尺寸将推动更好的芯片级性能,这就是现在所知的摩尔定律。


半导体沟道长度是这种缩放的一个最重要的维度,它是电流流动的距离,或由栅极电场控制的接通和关断设备的距离。尽管最初的沟道长度是许多微米大小,但将半导体通道扩展到分子尺寸的极限(纳米的几分之一)的建议可以追溯到20世纪70年代中期。


数十年来对通过共轭有机分子(被认为是取代硅沟道)的电子转移的研究突出了这种分子晶体管的几个重要挑战。最重要的问题包括低稳定性和有效门控的困难,以及与分子形成可靠的电接触。


要达到或超过硅电子的性能,很明显,新的通道材料必须具有类似的稳定性。在分子选择中,半导体单壁碳纳米管(CNT)有几个优点:


嵌套的多壁碳纳米管在室温下是有效的金属,因此作为晶体管通道的用途有限。在本综述中,CNT将意味着单壁碳纳米管。半导体碳纳米管由直径约1纳米的六角形排列碳的圆柱壳组成。电子只向前或向后移动,波函数缠绕在纳米管周围,形成具有几百毫电子伏能带的一维(1D)半导体。


这些材料在空气中是稳定的,可以通过半导体工业中常用的各种加工方法来操纵。通过在金属电极上覆盖半导体碳纳米管的场效应晶体管(FET)的早期演示导致了持续的研究活动,其目标是通过类似于制造硅电子产品的处理步骤,制造可再现的、可扩展的和集成到密集电路中的高性能器件。


对碳纳米管半导体的广泛兴趣也激发了对其他纳米材料的强烈和持续的探索,包括半导体纳米线、2D石墨烯、过渡金属二卤代化合物和氙。


尽管纳米材料的选择越来越多,但碳纳米管在稳定性、带隙以及其他候选材料无法媲美的优异电和热性能方面脱颖而出。在这里,我们回顾了碳纳米管晶体管的最新材料、器件和技术进展,确立了这一分子晶体管的实质性前景和剩余的挑战。


该领域的进展将与碳纳米管晶体管最重要的潜在应用有关,如图1所示。两个最突出的潜在应用是高性能(HP)计算芯片和用于显示背板和物联网(IoT)的薄膜晶体管(TFTs);表1总结了这些应用程序的一些目标性能指标。


下一代的晶体管候选,不是硅

成本和复杂性


图1所示:碳纳米管晶体管的广泛潜在应用。说明了碳纳米管晶体管的一些最重要的潜在应用的设备性能与成本和复杂性。


应用范围从微型薄膜器件(如印刷电子、生物传感器)到三维集成BEOL器件(如集成到硅CMOS上的异质3D层)和规模高性能(HP)FET【如低压超大规模集成(VLSI)】,其性能的提高与集成成本和复杂性的增加相对应。Lch,通道长度。


下一代的晶体管候选,不是硅

表1:两个突出的碳纳米管晶体管应用的几个目标指标。值是基于实现最佳性能的近似值。值得注意的是,尽管其中一些目标已经实现,但最重要的挑战之一是同时实现它们(例如,高通电电流与低阈值下摆动,这是一个衡量调制电流需要多少栅电压的指标)。高性能FET用于服务器的中央处理单元(CPU)等应用,TFTs是用于显示器背板电子器件的薄膜晶体管。





上一篇:专家释疑:核酸抗原有何区别?以哪个为准?核
下一篇:住房和城乡建设部科技与产业化发展中心