饶毅署名文章《美妙的生物荧光分子与好奇的生



 

饶毅署名文章《美妙的生物荧光分子与好奇的生物化学家》  
 

 

下村修

做出应获诺贝尔奖工作的科学家,几十年默默无闻;  

被广泛应用的分子,很少人知其发现者;

原始论文鲜为人知,后继论文倒很热门;  

曾失明的人,发现了美丽的发光蛋白;

低调的父亲,出了高调的儿子。

 

这里简介一项生物化学研究,讲一个科学家的故事,还讨论一个问题:是否活着的科学家中还有因好奇而做科学研究?

 

本文和我2002年一篇文章相同,不是预测诺贝尔奖,而是介绍值得获奖的工作。名单上不包括可以获奖、但其工作不值得获奖者。相反,本文的主人公可能被埋没得不到奖,但他的工作很值得介绍。

 

生物发光和荧光蛋白

 

现在研究生物的人,几乎都知道绿色荧光蛋白(GFP),但常常不知或搞错其发现者。毫无争议的发现者是日裔美国科学家下村修(Osamu Shimomura,下村脩)和已故美国科学家约翰森(Frank H. Johnson)。他们1961到1974年发现两种发光的蛋白质:水母素(aequorin)和GFP。

 水母素

生物发光现象,下村修和约翰森之前就有人研究。萤火虫发荧光,是由荧光酶(luciferase)作为酶催化底物分子荧光素(luciferin),有化学反应如氧化,以后产生荧光。而发现蛋白质本身发光,无需底物,起源于下村修和约翰森的研究。

 

下村修和约翰森用过几种实验动物,和本故事相关的是学名为Aequorea victoria的水母。1962年,下村修和约翰森等在《细胞和比较生理学杂志》上报道,他们分离纯化了水母中发光蛋白水母素。据说下村修用水母提取发光蛋白时,有天下班要回家了,他把产物倒进水池里,临出门前关灯后,回头看一眼水池,结果见水池闪闪发光。因为养鱼缸的水也流到同一水池,他怀疑是鱼缸排出的成分影响水母素,不久他就确定钙离子增强水母素发光。1963年,他们在《科学》杂志报道钙和水母素发光的关系。1967年Ridgway和Ashley提出检测钙的新方法:用水母素。钙离子是生物体内的重要信号分子,水母素成为第一个有空间分辨能力的钙检测方法,是目前仍用的方法之一。

 

1955年Davenport和Nicol发现水母可以发绿光,但不知其因。1962年下村修和约翰森那篇纯化水母素的文章中,有个注脚,说还发现了另一种蛋白,它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。其后他们仔细研究了其发光特性。1974年,他们得到了这个蛋白,当时称绿色蛋白、以后称绿色荧光蛋白(GFP)。Morin和Hastings提出水母素和GFP之间可以发生能量转移。水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。这是物理化学中已知的荧光共振能量转移(FRET)在生物中的发现。

 

下村修本人对GFP的应用前景不敏感,也未意识到应用的重要性。他离开普林斯顿到Woods Hole海洋研究所后,他的同事普瑞舍(Douglas Prasher)非常感兴趣用荧光蛋白做生物示踪分子。1985年普瑞舍和日裔科学家Satoshi Inouye分别根据蛋白质序列拿到了水母素的基因(生物学上准确地说是cDNA)。1992年,普瑞舍又拿到GFP的基因。有了cDNA,一般生物学研究者就很容易应用,比用蛋白质方便多了。

 

普瑞舍1992年发表GFP基因的文章后,离开科学界。原因是他申请美国国家科学基金时,评审者说没有蛋白质发光的先例,就是他找到了这种蛋白,也没什么价值。一气之下,他离开学术界去麻省空军国民卫队基地,到农业部动植物服务部工作。当时他如果花几美元,就可以做一个一般研究生都能做,但非常漂亮的工作:将来自水母的GFP基因放到其他生物体内(如细菌),看到荧光,可以很强烈地提示GFP本身可以发光,无需其他底物、或者辅助分子,也表明可以广泛用GFP。

 

将GFP表达到其他生物体这项工作,1994年由两个实验室独立进行:美国哥伦比亚大学做线虫的Marty Chalfie实验室,和加州大学圣迭哥分校、Scripps海洋研究所的两位日裔科学家Inouye和Tsuji。

 

水母素和GFP都有重要的应用。但水母素仍是荧光酶的一种,它需荧光素。而GFP是蛋白质本身发光,原理上不同。

 




上一篇:昭通2020名师助考⑳丨做好生物选择题,你就成功
下一篇:专注分子诊断实验室自动化的艾科诺完成A+轮融资